
LLNL-TR-460956

Application of Ensemble Sensitivity
Analysis to Observation Targeting for
Short-term Wind Speed Forecasting in
the Tehachapi Region Winter Season

J. Zack, E. Natenberg, S. Young, G. Van Knowe,
K. Waight, J. Manobainco, C. Kamath

October 22, 2010



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 

 
 

 

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore 
National Laboratory under Contract DE-AC52-07NA27344. 
 



Application of Ensemble Sensitivity Analysis 
to Observation Targeting 

for 
Short-term Wind Speed Forecasting in the 

Tehachapi Region Winter Season 
 

John Zack, Eddie Natenberg, Steve Young, Glenn Van Knowe, 
Ken Waight, John Manobianco 

AWS Truepower, LLC 
 

Chandrika Kamath 
Lawrence Livermore National Laboratory 

 
 
 
 
 
 
 
 
 
 
 
 

20 October 2010 



 1 

1. Introduction 
This study extends the wind power forecast sensitivity work done by Zack et al. (2010a, b) in 
two prior research efforts. Zack et al. (2010a, b) investigated the relative predictive value and 
optimal combination of different variables/locations from correlated sensitivity patterns. Their 
work involved developing the Multiple Observation Optimization Algorithm (MOOA) and 
applying the algorithm to the results obtained from the Ensemble Sensitivity Analysis (ESA) 
method (Ancell and Hakim 2007; Torn and Hakim 2008). 

In the previous two studies (Zack et al. 2010a, b), the ESA-MOOA approach was evaluated for 
the wind plants in the Tehachapi Pass, CA and Mid-Columbia Basin, WA regions for periods 
during the warm season. Both studies demonstrated that forecast sensitivity was characterized by 
well-defined, localized patterns for a number of state variables such as the 80-m wind and the 
25-m to 1-km temperature difference prior to the forecast time. The forecasted sensitivities were 
consistent with the basic physical processes responsible for wind patterns in the respective 
regions. 
In the current project, the ESA-MOOA approach is applied to the cold season (1 January to 18 
February 2010) for the wind plants located in the Tehachapi Pass as shown in Figure 1. 

 
 

Figure 1. The geographical area covered by the model grid domain used in the Tehachapi Pass 
ensemble sensitivity experiments. The color shading depicts the terrain elevation (m) on the scale 
of the model grid. The white box denotes the forecast target area.  
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The objectives for this study were to identify measurement locations and variables that have the 
greatest positive impact on the accuracy of wind forecasts in the 0- to 6-hour look-ahead periods 
for the Tehachapi Pass wind generation area during the cold season and to establish a higher 
level of confidence in the ESA-MOOA for mesoscale applications. 

The report is organized as follows. Section 2 provides an overview of the methodology, Section 
3 highlights ensemble factors that impacted the results, Section 4 presents single-variable results, 
Section 5 covers multiple variable results, and Section 6 concludes with a summary and 
discussion of future work. 

2. Methods 
The following subsections provide a brief overview of the methods used in this study. Zack et al. 
(2010a, b) describes the methodology in more detail. 

2.1 Description of ESA and EnKF 
ESA and the ensemble Kalman filter (EnKF) are the key methods used to evaluate sensitivity in 
this study. The ESA approach uses data generated by a set (ensemble) of perturbed numerical 
weather prediction (NWP) simulations for a sample time period to diagnose the sensitivity of a 
specified forecast variable (metric) for a target location to initial condition (IC) state variable(s) 
at other locations and prior times. The ensemble of NWP simulations is produced by starting 
with a single initial state at the beginning of the analysis period and introducing statistical 
perturbations into the initial and lateral boundary conditions. For subsequent simulations, the 
initial state is a combination of the predicted and observed state. This process generates a set of 
simulations that differ from each other due to the perturbations. The number of simulations must 
be large enough to produce a statistically significant sample for the sensitivity calculations. Past 
studies have used 48 or more ensemble members for large-scale ESA applications (Torn and 
Hakim 2008). 

The evaluation of simulation "spread" or differences between individual members of the 
ensemble was accomplished using EnKF (Houtekamer and Mitchell 1998; Evensen 2007). The 
EnKF attempts to balance the predicted and observed state of the atmosphere by estimating the 
likelihood of each state at any given time over the entire set of simulations in the ensemble. The 
EnKF assumes that model errors follow a normal (Gaussian) distribution in order to determine 
the most probable state of the atmosphere.  

The error was assessed using the time-dependent spread and deviations obtained from the 
ensemble state with that of the observed state. Ensemble members are allowed to integrate 
forward in time while the filter monitors the spread in the ensemble. The EnKF assesses 
predictabilities (likelihood of occurrence) of the variable of interest for the target area by 
monitoring the change in the spread of the NWP ensemble. 

2.2 Model Configuration 
The NWP simulations were generated on a three-dimensional matrix of 200 x 200 x 39 points 
with 4-km spacing centered over southern California. This grid is identical to the one used for 
the summer Tehachapi Pass simulations (Zack et al. 2010a). The vertical grid spacing increases 
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with height so that there is higher resolution near the surface of the earth. Appendix B includes a 
table that lists the vertical levels. 

The simulations were produced using version 2.2 of the Weather Research and Forecast (WRF) 
atmospheric model (Skamarock et al. 2005). Observational data were assimilated every 6 hours 
using an EnKF data assimilation procedure within the Data Assimilation Research Testbed 
(DART) software (Anderson 2001; Anderson et al. 2009). Data from the Rapid Update Cycle 
(RUC) model were used for initial and lateral boundary conditions. A total of 48 ensemble 
members were used in the analysis. Appendix A contains additional details of the (1) WRF 
model configuration, (2) EnKF data assimilation system, and (3) data types assimilated. 
The simulations extended from 0000 UTC 1 January to 0300 UTC 18 February 2010. This 
period fell near the end of a weak to moderate El Niño phase of the El Niño-Southern Oscillation 
(ENSO). Studies have demonstrated that there is a connection to the frequency and strength of 
the large scale low pressure systems that impact the Tehachapi Pass region in the winter and the 
phase of ENSO (Monteverdi and Null 1998). Thus the phase of ENSO would seem to be a 
relevant factor in the climatological sensitivity relationship between the IC variables to the 
variability of wind speed at the target location. To answer this question, experiments would need 
to be performed for winters in different phases of ENSO. 
The first two days were designated as a “spin-up” period and the data were not used in the 
sensitivity calculations. Therefore, the analysis period covered 46 days from 3 January to 18 
February 2010. The simulation period consisted of 6-hour simulations with data assimilation at 
the beginning of each period. A 6-hour cycle between data assimilation was chosen to allow the 
model enough time to adjust to the ingested observational data.  

The sensitivities were calculated for two separate time periods from 0 to 3 hours and from 3 to 6 
hours. The 3-hour sensitivities were computed because this is the look-ahead period of greatest 
interest to the grid operators. The 3- to 6-hour sensitivities were also computed for each forecast 
in order to provide additional independent time periods to evaluate. The 1-hour sensitivities were 
computed from the initial time to hour 1 and from hour 3 to hour 4 of each simulation. 

2.3 Description of IC Variables  
The forecast metric (F) was defined as the average 80-m wind speed above ground level (AGL) 
over the target area shown in Figure 1. The sensitivity calculation is not restricted to the same 
variable used to define the forecast metric. Sensitivity values were calculated and evaluated for 
the thirteen IC state variables listed in Table 1. 
The IC variables can be grouped into three categories: (1) Single level sensitivities, which 
include wind speed at various levels and 2-m temperature, (2) vertical wind shear, and (3) 
vertical temperature gradient. The wind shear and temperature gradients were computed for 
various layers from near the surface to a level of 2-km AGL. 

2.4 Description of Statistical Quantities Used to Evaluate Sensitivity  
Three statistical quantities are used to qualify and quantify the relationship between the 
evaluation IC variables and correlation of those variables to the 80-m wind (metric variable) at 
the target location: (1) sensitivity, (2) frequency of significant sensitivity, and (3) coefficient of 
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determination (R2). These statistical quantities and methods of calculation are described fully in 
Zack et al. (2010a, b). 

The sensitivity relationship is expressed as: 

  
(1) 

where ∂F/∂s is defined as the sensitivity of a target forecast metric variable (F) to selected IC 
state variables (s) from prior simulated times at all points in the model domain. The covariance 
(cov) and variance (var) are computed over all ensemble members (Ancell and Hakim 2007). 
The sensitivity can be thought of as the slope of a linear relationship between the IC variable and 
the forecasted variable. A higher absolute sensitivity value means that a given change in the IC 
variable will lead to a larger change in the variable being forecasted. 

The average was constructed for all dates and times in the analysis period to obtain information 
about which areas have the highest average sensitivity over all cases. In addition, the average 
was computed for periods with the largest ensemble variance in the forecast metric. This 
approach yields information about the locations and variables that have the most sensitivity for 
those types of events. Details of how the computations were made for the ensembles with the 
largest variance are presented in Section 2.6. 

 

 

∂F
∂s

=
cov(F,s)

var(s)
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Table 1. Thirteen IC state variables used in the evaluation of sensitivity. 

Wind Speed Related 

80-m AGL wind speed  

250-m AGL wind speed  

1.5-km above mean sea level (AMSL) wind speed  

3-km AMSL wind speed  

Wind Shear Related 

10-m to 80-m AGL wind shear  

80-m to 500-m AGL wind shear  

500-m to 1-km AGL wind shear  

Temperature Related 

2-m AGL temperature  

2-m to 80-m AGL temperature difference  

80-m to 1-km AGL temperature difference  

80-m to 500-m AGL temperature difference  

500-m to 1-km AGL temperature difference  

1-km to 2-km AGL temperature difference  
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2.5 Location and Variable Combinations 
The forecast sensitivity dataset can be used to select a combination of locations and variables 
that will provide the most improvement for the prediction of the forecast metric over the desired 
look-ahead period. Typically, the direct use of the most sensitive points would not likely yield an 
optimal solution because the IC variables, in general, have a significant degree of correlation. 
Even though a number of variables may exhibit a high degree of sensitivity, much of the 
“predictive” information in each variable is highly correlated with the information in other 
variables. Therefore, many of the highly sensitive variables/locations essentially provide 
redundant information about the variability of the forecast metric for a given look-ahead period. 
In order to address this issue, the MOOA (Zack et al. 2010a, b) was used to determine the 
relative predictive value of different combinations of variables/locations. In this procedure, a 
small set of variables/locations is selected by a separate algorithm and then multiple linear 
regression is performed on all combinations of variables/locations within that set. 
In the Tehachapi Pass warm season study (Zack et al. 2010a), the maximum average sensitivity 
magnitude was used as the criteria to select locations for the set of variables used in the MOOA. 
The locations of the maximum average R2 value were chosen in this study because previous 
efforts (Zack et al. 2010a, b) suggest that R2 patterns were a better indicator of which 
combinations and individual variables/locations have the most value for a given forecast look-
ahead period. 

In an effort to improve the results from the previous studies (Zack et al. 2010a, b), four instead of 
three variables are used in the regression calculations for both the 1- and 3-hour look-ahead 
times. The variables are normalized prior to the regression. The normalization permits the 
regression coefficients to be used as an indicator of the relative importance of each variable 
when combined with other variables in the set. The R2 values of each multiple regression can 
also be used as an indicator of which combinations and individual variables/locations have the 
most value for a given forecast look-ahead period. 

2.6 High Ensemble Variance Sensitivities 
To examine further the impact of ensemble variance on the sensitivity results, a subsample of 
cases was chosen to assess results for only those cases that had high ensemble variance. Table 2 
lists 73 unique 3-hour periods that were chosen from the results (presented in Section 4) to 
compute 3-hour look-ahead sensitivities for the metric location. These cases included both times 
of observed and simulated ramps as well as times of little to no wind speed change. The observed 
ramps were determined by looking at five private meteorological (met) tower data in the 
Tehachapi pass area. Both observed met tower and simulated ensemble data were used to 
determine the ramp periods. To be considered part of the high variance dataset ensemble, 
simulated variance had to be ~1 m/s for 80 meter wind speed at the metric location for more than 
one assimilation cycle (greater than 6 hours) shown in Figures 3 and 4. 
This increased ensemble spread represents a greater amount of uncertainty in the forecasted state 
within the ensemble. It is thought to produce a more representative assessment of the impact of 
each initial condition parameter, as shown by better spatial patterns in the sensitivities and higher 
R2 values for the single variable regressions. The need for a higher variance dataset is discussed 
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in Section 3 while the results for the single and multivariate analyses are discussed in Sections 4 
and 5, respectively. 

Table 2. Summary of the 73 high variance period cases for Tehachapi Pass. 
 

Date Valid Metric Time (UTC) 
1/10/10 00,03,21 
1/11/10 00 
1/13/10 00,03,12,18 
1/14/10 00,03,06,09,12,15 
1/18/10 12, 
1/19/10 06,09,12,18,21 
1/20/10 00,06,09,12,18 
1/21/10 06,09,15,18,21 
1/22/10 09,12,15,18,21 
1/23/10 00,03,06,09,12,15,18,21 
1/24/10 00,03,06,09,12 
2/5/10 18 
2/6/10 00,03,06,09,12,15,18,21 
2/7/10 00,03,06,09,12,15,18,21 
2/8/10 00,03,06,09 
2/9/10 21 
2/10/10 00,12,15 

 

3. Ensemble Factors Impacting Results 
The was a noted lack of ensemble spread in the Tehachapi winter season low simulations when 
compared with the Tehachapi and Mid-Columbia warm season experiments (Fig. 2). The 
question of whether the ensemble spread was representative of the true variability (uncertainty) 
was addressed by comparing wind speed observations made in the local area with values from 
the ensemble members. The fact that observations are frequently well outside the range of 
simulated wind speeds indicates that the ensemble is not capturing the true uncertainty and is 
generally underdispersive. 

The lack of ensemble spread in both the metric variable (80-m wind speed at the target location) 
and the thirteen IC variables (throughout the grid) was a significant factor that impacted the 
interpretation of the Tehachapi winter simulation experiments. The following discussion explains 
how the lack of ensemble spread impacted the results and may have been caused by the 
perturbation technique. 

The winter season low ensemble spread was considerably different from what was observed in 
the Tehachapi and Mid-Columbia warm season experiments. The results for both warm season 
sensitivity experiments exhibited significant ensemble spread in the 80-m wind speed on the 
order of several meters per second in the metric box. The summer season sensitivities showed 
patterns that were meaningful from a meteorological perspective. These patterns were coherent 
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and consistent with the existing knowledge of basic physical processes associated with diurnally 
driven terrain flows that dominate the Tehachapi region in the summer season. Ensemble 
divergence was greatest in areas of elevated terrain related to terrain forced circulations in the 
Tehachapi region. 

 
Figure 2. Comparison of average variance of 80-m wind speed (m2/s2) throughout the entire 
domain for all time periods in 46-day analysis period for Tehachapi Pass for the summer (left) 
and winter (right). Note that the scale extends from 0 to 50 on the left, and 0 to 0.5 on the right. 
In contrast to the summer results, the interpretation of the Tehachapi winter results was limited 
by low ensemble spread in the wind speed forecast for the metric location (Fig. 3). The 
Tehachapi winter average ensemble standard deviation was only 0.12 m/s for the entire 46-day 
period. With the exception of a few hours around 0000 UTC on January 20, all ensemble 
members predicted a nearly identical sequence, timing, and to a lesser extent, amplitude of wind 
ramping events (Fig. 4). This pattern prevailed even when the ensemble had significant errors in 
predicting ramping events, such as on 19-20 January and 26-29 January (Fig. 4). 
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Figure 3. Ensemble 80-m mean wind speed (blue line), 80-m wind speed standard deviation (red 
line) and observed 5-tower 30-m mean wind speed (black line) in the Tehachapi pass area for 
the entire 46-day sample. The gray shading shows the expanded period in Figure 4. The average 
ensemble standard deviation for the entire period is 0.12 m/s. The periods of 19-20 and 26-29 
January referenced in the text are depicted by a thick blue line on the date axis. The period 
shaded in gray is shown in Figure 4. 
In the Tehachapi Pass winter simulations there was also a noticeable lack of ensemble spread for 
all thirteen initial condition variables over the majority of times during the 46-day analysis 
period. Overall, the magnitude of the sensitivities for the full 46-day period was much lower than 
that for the summer Tehachapi and Mid-Columbia Basin experiments. 
As shown in Equation 1, the sensitivity is the slope of the regression that approximates the 
correlation between the change in the IC state variable and the metric variable. It consists of the 
ratio of the covariance between the IC state variable and the forecast metric (the numerator) to 
the variance of the IC state variable (the denominator). Low variance in the IC state variable for 
the winter case decreases the magnitude of the denominator. As a result of the mathematical 
relationship between the numerator and denominator, small changes in the covariance between 
the forecast metric to the initial condition (numerator term) and the variance of the initial 
condition (denominator term) can lead to large changes in the sensitivity value. 
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- 
Figure 4. Observed and ensemble predicted wind speed in the metric box for 18-24 January 
2010 (top) and 25-31 January 2010 (bottom) with time in UTC. Ensemble standard deviation 
appears as a red line at the bottom of each graph. Ensemble members appear as a blue line 
when the spread is small and a colored band when it is larger. A few individual members diverge 
from the mean enough to appear individually (gold and green lines) only around 0000 UTC on 
January 20. Black lines with various dash and dot patterns depict observations at each of the 
five 30-m towers in the Tehachapi pass area. The thick black line depicts the average 
observational values of the five towers. The periods of 19-20 and 26-29 January referenced in 
the text are depicted by a thick blue line on the date axis. 

Both the variance and covariance terms exhibited generally low values. Figure 2 shows that the 
mean winter variance of the 80-m wind speed IC state variable over the entire domain was 
approximately two orders of magnitude smaller than the summer variance. The relatively weak 
signal in the variance of the IC state variable found in this study typically resulted in scattered 
high and low sensitivity values (Fig. 5). This issue caused noisy spatial sensitivity patterns, low 
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R2, and low significant sensitivity frequency (as discussed in Section 4). The uncertainty also 
makes it more difficult to interpret the results and develop a meaningful meteorological 
explanation. 
 

 
Figure 5. Sensitivity of average 80-m wind speed in the white box (forecast metric box) at 
0300 UTC 3 February to 80-m wind speed three hours earlier. 
The widely varying sensitivities as well as low R2 and significant sensitivity frequency seemed to 
be due to the general convergence of the ensemble, which manifested itself as low ensemble 
spread. The lack of spread may have been at least partly due to the generally weaker surface flow 
regime that dominated this period. Also, the lack of a diurnally-forced weather regime had a 
negative impact on resolving higher magnitude sensitivities when computing averages. 
Assuming the spread accurately represents the uncertainty, the smaller spread among the 
ensemble members would indicate an increased amount of certainty in the forecasted state for the 
winter period. Observations then should have little impact on the NWP forecasted state due to 
ensemble convergence and the general low spread of the metric and initial condition variable 
state in the winter. However, it is possible that the true uncertainty was larger than the ensemble 
spread suggested. 

Ideally, ensemble spread is proportional to the uncertainty in the model prediction. Spread is 
maintained by introducing perturbations into the boundary conditions of each member at periodic 
intervals. In an ideal situation, the perturbations neither amplify in an unstable manner nor 
rapidly dampen. Amplification can lead to model instability while rapid dampening leads to 
ensemble convergence and insufficient spread.  
The statistics presented in Figures 3 and 4 suggest that perturbations introduced into the 
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ensemble through the external boundary conditions rapidly dampened as they moved into the 
interior of the domain, resulting in insufficient ensemble spread. There are many times when the 
ensemble spread of the forecast metric is very small, implying low uncertainty in the forecast 
Fig. 3). However, the observations at the metric location are very different from the narrow 
consensus of ensemble members. 
The perturbation techniques used to generate the ensembles were identical for the Tehachapi 
winter and Mid-Columbia summer experiments (Zack et al. 2010b). On the other hand, the 
Tehachapi summer ensemble used a smaller horizontal correlation parameter to compute the 
perturbations (Zack et al. 2010a). However, the Mid-Columbia ensemble was run with an inner 
nested grid and an outer grid while the Tehachapi ensembles included only a single high-
resolution grid. Since the perturbations for the Mid-Columbia ensemble were introduced on the 
outer grid, they were significantly farther from the area of interest than the perturbations 
introduced in the Tehachapi winter ensemble. Even with the differences in perturbation and 
nesting techniques, both the Mid-Columbia and Tehachapi summer ensembles did have 
sufficient spread and meaningful results. 
Based on the above analysis, the results indicate that the growth and decay of perturbations 
varies primarily because of three factors: 

(1) amplitude and spatial extent of the perturbations, 
(2) type of weather regime, and 
(3) model grid parameters. 

Some combination of these factors most likely caused the low ensemble spread in the Tehachapi 
winter regime. For perturbations to amplify in the ensemble, their spatial size must match modes 
within the ensemble that are uncertain and the spatial extent of the perturbations must be large 
enough to induce spread in both the first set of initial conditions and the boundary conditions for 
every forecast interval. For the Mid-Columbia ensemble (Zack et al. 2010b), the spatial extent of 
the perturbed boundaries were large enough to cause adequate ensemble divergence, but these 
settings were likely not adequate to induce enough spread in the non-nested Tehachapi winter 
runs. 

4. Single-Variable Results 
This section discusses the spatial variation of sensitivity, R2, and frequency of significant 
sensitivity for some of the variables listed in Table 1. Section 5 discusses the use of the MOOA 
technique to find optimal combinations of variables and locations. 

4.1 Winter and Summer Differences 
The flow in the Tehachapi Pass for the time period examined was dominated by two sets of 
large-scale weather patterns. One pattern involved strong synoptic scale low pressure systems 
moving through the mid California region associated with a strong upper-tropospheric polar jet 
stream near or over the target region (Figure 6, upper left and right panels). The other pattern 
occurred when the upper tropospheric jet stream was displaced north of the target area resulting 
in weak synoptic forcing (Figure 6, lower left and right panels). The mesoscale forcing was very 
weak during this period. In addition, the land-ocean temperature difference was quite small, so 
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diurnally-forced sea breeze circulations were relatively weak. This regime was very different 
from the summer when the synoptic pattern was consistently weak and the diurnally-forced 
circulations were much stronger. 

 
Figure 6. Surface pressure (hPa) and frontal systems (left panels) with 300 hPa winds and 
heights (right panels) at 1200 UTC 21 January 2010 (top) and 0000 UTC 1 January 2010 
(bottom) For the surface maps on left panels, cold fronts are indicated with blue lines, warm 
fronts with red lines, occluded fronts with purple lines, and isobars with brown lines every 4 
hPa. The observations plotted on all panels follow standard meteorological convention for 
surface and upper air stations. Winds are plotted as barbs (short barb = 2.5 m/s, long barb= 5 
m/s, and pennant = 25 m/s). For upper air maps on right panels, streamlines are plotted as black 
lines with arrows and isotachs are plotted as blue lines every 12.5 m/s with shading for wind 
speeds ≥ 37.5 m/s. 
 

Overall, the analysis indicates that average Tehachapi Pass sensitivities are weakly influenced by 
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the large-scale and mesoscale flow through the Pass. The fact that variable, large scale flows 
dominate the Tehachapi Pass region in the winter seems to generate lower average sensitivities 
when compared to Tehachapi Pass in the summer. This result was quite different from the warm 
season patterns that were characterized by significant variations in the forecast sensitivity based 
on time of day (Zack et al. 2010a). However, interpretation of the winter results is less certain 
due to the issue of low ensemble spread as discussed in Section 3. 

 
4.2 Case Example 
The output data from the ensemble of simulations provide a large volume of information about 
the space-time connection of atmospheric variability within the simulation domain. 

For most time periods and locations, the slope of the regression line associated with the forecast 
metric plotted against any of the state variables was essentially zero (not shown). The R2 value 
was also approximately zero indicating the variable explained none of the variance of the 
forecast metric at the target location. 

There were a few cases for specific locations and variables that did explain a substantial amount 
of variance of the forecast metric. The spatial plots of R2 (Fig. 7) and sensitivity (Fig. 8) on 0900 
UTC 23 January 2010 show an example where data from all ensemble members resulted in a 
meaningful linear relationship. In this case, the metric variable F is the average 80-m wind speed 
at 0900 UTC and the IC state variable is 80-m wind speed three hours earlier. 

Points labeled A (79, 106), B (81, 105) and C (51, 79) in Figures 7 and 8 show different 
relationships between sensitivity and R2. Large negative sensitivity values are found near point A 
while large positive values are found near point B with both points showing high R2 values (Fig. 
8). On the other hand, there is an area of large negative sensitivity near point C (Fig. 7) with low 
R2 (Fig. 8). The sensitivity graphs for these three grid points are presented in Figure 9. 
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Figure 7. Average R2 of the 80-m wind speed in the white box at 0900 UTC 23 January 2010 
to 80-m wind speed three hours earlier. Areas of high R2 values are near points A and B and 
low R2 values near point C. 

 
Figure 8. The forecast sensitivity of the average 80-m wind speed in the white box at 0900 UTC 
23 January 2010 to 80-m wind speed three hours earlier. Notes areas of large negative (near 
point A) and large positive (near point B) sensitivity both with high R2 values (Fig. 7) and large 
negative sensitivity (near point C) with low R2 values (Fig. 7). 
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There is a well-defined inverse relationship at point A between changes in the 80-m wind speed 
IC variable and changes in average 80-m wind speed over the forecast target area three hours 
later (Fig. 9 left panel). The slope of the regression line at point A indicates that a 1 m/s change 
in 80-m wind speed is associated with a -1.8 m/s change of the 80-m wind speed in the 
Tehachapi Pass target area three hours later. The R2 value for this regression is 0.43 so the 
variation of 80-m wind speed at 0600 UTC explains approximately 43% of the variance in the 
forecast target metric three hours later. 
At point B, there is a well-defined direct relationship between changes in 80-m wind speed and 
changes in the average 80-m wind speed over the forecast target area three hours later (Fig. 9 
middle panel). The slope of the regression line at point B indicates that a 1 m/s change in 80-m 
wind speed at point B is associated with a 1.4 m/s change of 80-m wind speed in the Tehachapi 
Pass target area three hours later. The R2 value for this regression is 0.52 so the variation of 80-m 
wind speed at 0600 UTC explains approximately 52% of the variance in the forecast target 
metric three hours later. For this case, both points A and B represent areas where the ensemble 
produces results that can be explained well by a linear relationship. Therefore, a better estimate 
of the IC variable (80-m wind speed) in these locations would contribute to a predictable change 
in the value of the forecast metric, and can be well approximated by the linear regression shown 
in Figure 9. 

Unlike points A and B, point C has high sensitivity but is poorly represented by the linear 
relationship as indicated by a low R2 value at point C. There is an inverse relationship at point C 
between changes in 80-m wind speed and average 80-m wind speed over the forecast target area 
three hours later (Fig. 9 right panel). The slope of the regression line at point C indicates that a 
1.0 m/s change in the 80-m wind speed is associated with a -3.8 m/s change of 80-m wind speed 
in the Tehachapi Pass target area three hours later. The R2 value for this regression is 0.16 so the 
variation of 80-m wind speed at 0600 UTC explains approximately 16% of the variance in the 
forecast target metric three hours later. These results illustrate that although there is a high 
magnitude sensitivity, the linear regression explains only a small part of the wind speed variance 
three hours later at the metric location for point C. 

Figure 9. Scatter plot of 80-m wind speed (IC variable) for model grid points A (79, 106), B, 
(81, 105) and C (51, 79) at 0600 UTC 23 January 2010 versus 80-m wind speed (forecast metric) 
at 0900 UTC from each of the 46 ensemble members and the associated regression lines. 
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4.3 Climatology of Sensitivity 

In order to make inferences about the best measurement locations and variables to improve 
forecast performance over a wide variety of cases, it is necessary to analyze a statistical 
composite of sensitivity values over a representative sample of cases. Two analyses were 
performed. One analysis included all cases (Sections 4.3.1-4.3.5) while the other was done on a 
subsample of cases (Section 4.3.6) that focused only on periods of higher ensemble variance as 
described in Section 2. 

4.3.1 Look-Ahead Time Sensitivities  

The average 46-day sensitivity values of 80-m wind speed in the target box to 80-m wind speed 
for a 1-hour look-ahead period are shown in Figure 10 (left panel). The highest sensitivity values 
for the 1-hour look-ahead time are in close proximity to the metric location and along the 
southern boundary of the grid. The 3-hour look-ahead time sensitivities are weak through most 
of the domain with the exception of some large values located in areas off shore in the southwest 
corner of the domain and near the boundaries (Fig. 10 right panel). These high values are most 
likely due to the variance issues discussed in Section 3. 

 

Figure 10. Average sensitivity of 80-m wind speed (m/s) within the white target box to 80-m 
wind speed (m/s) throughout the entire grid domain for a 1-hour ahead (left) and 3-hour ahead 
(right) forecast for all time periods in the 46-day analysis period for the Tehachapi Pass Region. 
Note that the scale extends from -0.25 to 0.25 on the left, and -0.25 to 0.30 on the right. 

4.3.2 Sensitivity of Different IC Parameters 
To determine the impact of other variables on wind speed at the target locations, the thirteen IC 
parameters listed in Section 2.3 were examined for all three metric locations. This subsection 
examines how sensitivity varies among variables. 
Unlike the Tehachapi and Mid-Colombia summer season results (Zack et al. 2010a, b), 80-m 
winds were not clearly the best variable to predict wind speed at 80-m within the target location 
at a later time although it still produced somewhat higher values of R2 when compared to other 
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initial condition variables. Sensitivities were also computed for 250-m AGL wind speed, 1.5-km 
AMSL wind speed and 3-km AMSL wind speed for the three target locations. 

The wind speeds at all levels produced similar results to those from the 80-m level. Figure 11 
shows that the 3-km level wind sensitivities are similar to those at 80-m (right panel of Fig. 10). 
A few areas of high sensitivity are located mainly over water in the southwest part of the domain. 
Sensitivities are weak elsewhere. The larger sensitivities in the southwest part of the domain may 
be due to their location near the upstream boundary and the perturbations introduced by the 
EnKF. Section 4.3.3 shows that R2 values are consistently very small in this region, suggesting 
that none of the sensitivities have any forecast utility. 
The role of wind speed change with height (i.e. wind shear) was also examined as an IC 
parameter for the three layers listed in Table 1 (10-m to 80-m AGL, 80-m to 500-m AGL, 500-m 
to 1-km AGL). The sensitivity patterns for wind shear were quite similar to those of raw wind 
speed at various heights, with the greatest sensitivity values located in the southwest corner of 
the domain. Results for the 10-m to 80-m AGL layer that is just below turbine height are shown 
in Figure 12. 

A similar sensitivity pattern to 80-m wind was also observed for the 3-hour look-ahead time in 
other variables such as the 2-m surface temperatures and the 2-m to 80-m temperature difference 
IC parameter (Figs. 13 and 14). Sensitivity plots for other variables are provided in Appendices 
C and D. 
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Figure 11. Average sensitivity of 80-m wind speed (m/s) within the white target box to 3-km 
AMSL wind speed (m/s) throughout the entire grid domain for a 3-hour ahead forecast for all 
time periods in the 46-day analysis period. Note that the scale extends from -0.25 to 0.30. 

 

 
Figure 12. Average sensitivity of 80-m wind speed (m/s) within the white target box to 
10-m to 80-m AGL wind shear throughout the entire grid domain for a 3-hour ahead 
forecast for all time periods in the 46-day analysis period. Note that the scale extends 
from -1.5 to 3.0.  
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Figure 13. Average sensitivity of 80-m wind speed (m/s) within the white target box to 2-m 
temperature throughout the entire grid domain for a 3-hour ahead forecast for all time 
periods in the 46-day analysis period. Note that the scale extends from -12 to 12.  

 
 

Figure 14. Average sensitivity of 80-m wind speed (m/s) within the white target box to 2-m to 
80-m temperature difference throughout the entire grid domain for a 3-hour ahead forecast 
for all time periods in the 46-day analysis period. Note that the scale extends from -25 to 25.  
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The vertical temperature gradient sensitivities were also examined for the 80-m to 500-m AGL, 
500-m to 1-km AGL, and the 80-m to 1-km AGL layers. These IC variables as well as some of 
the wind shear IC variables did not produce any obvious regions of high sensitivity (Appendix 
C). Overall, sensitivities were weak at all levels of the atmosphere for all variables.  

4.3.3 Coefficient of Determination (R2) Analysis 

Similar to a map of sensitivities (e.g. Fig. 9), R2 can be plotted for the entire region (Fig. 15) as 
well. The average R2 for 80-m wind speed at every grid point for all 46 days show large values 
surrounding the immediate target area. Unlike the sensitivity plots, there is no region of elevated 
R2 values in the southwest corner of the domain. This pattern suggests that regions of high 
sensitivity in the southwest part of the domain will provide no value in improving the forecast of 
80-m wind speed at the target location. As discussed in the previous section for sensitivities, R2 
values decrease with increasing look-ahead hour. For all initial condition variables, the highest 
R2 values are located in close proximity to the forecast metric location. Therefore initial 
conditions close to the forecast target location seem to have some value to the forecast of 80-m 
wind speed at the target location. 

 
 

Figure 15. Average R2 of 80-m wind speed (m/s) within the white target box to 80-m wind 
speed throughout the entire grid domain for a 1-hour (left) and 3-hour (right) look-ahead 
period over all time periods in the 46-day analysis period. Note that the scale extends from 
0.0 to 0.190 (left) and 0.0 to 0.090 (right). 

There is a notable decrease in the magnitude of R2 with increasing look-ahead time and distance 
from the forecast site (Fig. 15 left and right panel comparison) similar to the changes in 
sensitivity (Fig. 9). The higher 1-hour look-ahead sensitivities and R2 values for 80-m wind 
speed very close to the target location show that persistence tends to dominate as the best 
forecast method at very short lead times. Similar to the Tehachapi Pass and Mid-Columbia Basin 
warm season studies, as the look-ahead time increases, correlations between the IC parameter 
and the metric parameter tend to decrease but more significantly in this Tehachapi winter study. 
However, the area of highest explained variance of the regression was typically a larger circular 
pattern surrounding the target area at the 3-hour look-ahead periods as compared to being farther 
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upstream in the previous studies (Zack et al. 2010a, b). 
The pattern of 3-hour R2 values for the IC 2-m to 80-m temperature difference (Fig. 16) is 
similar to the one for 80-m wind speed IC (Fig. 15 right panel). The magnitude and spatial extent 
of the R2 results for all other initial condition parameters were similar to those shown in Figures 
15 and 16. Appendix D has R2 plots for additional IC variables. 
These results imply that the information in the initial state is most correlated near the target 
region. It should be noted that the structure and magnitude of the R2 results, as well as the 
sensitivities, were impacted by the ensemble spread problems discussed in Section 3. So these 
results may not be truly representative of all uncertainty in the regional flow. Locations of 
maximum average R2 presented in this section were also used to calculate a multivariate 
regression discussed in Section 5. 

 
 

Figure 16. Average R2 of the sensitivity of 80-m wind speed (m/s) within the white target box 
for the 2-m to 80-m temperature difference throughout the entire grid domain for a 3-hour 
ahead forecast during all time periods in the 46-day analysis period. Note that the scale 
extends from 0.0 to 0.085. 

4.3.4 Significant Sensitivities 
As noted earlier, an alternative summary statistic is the frequency with which an IC variable 
exhibits statistically significant non-zero sensitivity at the 95% confidence level. If this criterion 
is satisfied for a specific grid point and time, it indicates only a 5% probability that the sensitivity 
was produced by random data variations drawn from a sample in which the actual sensitivity was 
zero or of a different sign than the estimated sensitivity. Thus, it is very unlikely that the actual 
sensitivity is zero or of a different sign at that point and time. However, this statistic does not 
provide information about the magnitude of the sensitivity. 
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For the Tehachapi Pass region, the statistically significant non-zero sensitivity at the 95% 
confidence level was computed for each forecast interval in the 46-day analysis sample. Then the 
fraction of the 46-day sample having non-zero sensitivity was calculated for each of the IC 
variables under consideration. Figure 17 illustrates the frequency of statistically significant non-
zero sensitivity to 80-m wind speed for a 3-hour forecast of the average 80-m wind speed in the 
metric area (white box). 

The pattern of significant sensitivities (Fig. 17) resembles the R2 sensitivity pattern (Fig 15 right 
panel), with the areas of highest significant sensitivity values surrounding the target location in a 
roughly circular pattern. The fact that the area near the metric box has a high frequency of 
statistically significant non-zero sensitivity (Fig. 17) but a somewhat smaller average sensitivity 
(Fig. 10 right panel) suggests that 80-m winds in the metric box have a more persistent, but 
smaller sensitivity to the local values 3 hours earlier. The indication is that while sensitivities to 
the west are stronger, they are less often statistically significant. Significant sensitivity frequency 
plots for additional IC variables can be found in Appendix E. 

 

Figure 17. Frequency (fraction of time periods) of statistically significant non-zero 
sensitivity at the 95% confidence level of the average 80-m wind speed in the forecast metric 
area (white box) to 80-m wind speed 3 hours earlier for the 46-day sample. 

4.3.5 All Case Summary 
In general, the results showed weak sensitivities for all locations, variables, and levels. The area 
of high sensitivities that appears in the southwest corner of the domain is most likely the result of 
persistent southwesterly flow and an artifact of the methodology due to the interaction of the 
southwest flow with the boundary conditions. Further study will be needed to determine if these 
points are physically or just statistically correlated with the target location. 
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The R2 and significant sensitivities showed similar patterns with the highest values of R2 and 
significant sensitivities surrounding the target location in a quasi-circular (anisotropic) pattern. 
The correlation parameters, although not strong, were the largest for the (1) 80-m wind speed, (2) 
250-m wind speed, (3) 2-m to 80-m temperature gradient, and (4) 10-m to 80-m wind shear. 
Based on these results, such parameters should provide the maximum improvements to short-
range forecasts at the target locations. 

4.3.6 High Variance Period Subsample 
In addition to examining the full simulation period, a subsample was compiled containing just 
the periods with large ensemble spread in the forecast metric (referred to as the “high variance 
sample”). The sample was composed of 73 unique 3-hour forecast periods, as discussed in 
Section 2 (Table 1). For these events, the average sensitivity, average R2, and significant 
sensitivities were computed for the subsample. The average sensitivities of 80-m wind speed 
within the white target box to 3-km AMSL wind speed for the subsample period (Fig 18) were 
higher than those for the full period (Fig. 11) but in an absolute sense, the subsample period 
sensitivities were still low. 
 

 
Figure 18. Average sensitivity of 80-m wind speed (m/s) within the white target box to 3-km 
AMSL wind speed (m/s) throughout the entire grid domain for a 3-hour ahead forecast during 
the high variance subsample analysis period. Note that the scale extends from -0.9 to 1.2. 
The goal of the high variance dataset was to improve the estimates of explained variance by the 
linear regression for the sensitivity relationship. However, the R2 values associated with the 80-
m wind speed IC for the high variance subsample (Fig. 19) were slightly but not significantly 
lower than when using the full period cases (Fig. 15 right panel). These results (for the high 
variance subsample) showed substantial high frequency noise and a decrease in R2 values with 
increasing distance away from the metric location. Results for other IC variables are shown in 
Appendix D. This finding was important because a major issue with the simulations was lack of 
ensemble spread. It was expected that days with larger metric variable spread would yield greater 
sensitivities, higher R2 values, and more coherent sensitivity patterns. However, the magnitude of 
the metric variable spread [i.e. var(s) in Eq. 1] does not necessarily vary directly with ensemble 
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spread (which impacts the numerator in Eq. 1). As a result, the metric variable spread can 
increase leading to low R2 values if there is no corresponding increase in ensemble spread. 

 

 
Figure 19. Average R2 of 80-m wind speed (m/s) within the white target box to 80-m wind speed 
throughout the entire grid domain for a 3-hour ahead forecast during the high variance 
subsample analysis period. Note that the scale extends from 0.015 to 0.060. 

5. Multiple Variable Results 
Section 4 discussed the spatial variation of sensitivity and several statistical quantities used to 
identify the most useful locations to make measurements over the 46-day period. This section 
explores techniques to identify the best combination of variables and locations to achieve 
maximum reduction in forecast error. 

MOOA was applied to the forecast sensitivity data generated for the Tehachapi Region winter 
season experiments. Separate calculations were performed for the full 46-day sample and a high 
variance subsample described in Section 2.6. 
Of the thirteen variables listed in Table 1, only the (1) 80-m AGL wind speed, (2) 250-m AGL 
wind speed, (3) 2-m to 80-m AGL temperature difference, and (4) 10-m to 80-m AGL wind 
shear were chosen for use in the MOOA regression method. These four variables were selected 
because they showed the highest R2. 
First, the locations of the highest R2 values were computed for all four variables at both 3-hour 
and 1-hour look-ahead periods (Fig. 20). For the 1-hour look-ahead results, the locations are all 
within the metric box indicating that off-site observations would have little beneficial use for 
improving a 1-hour forecast. These results highlight the importance of persistence dominating 
the 1-hour look-ahead period and suggest that only information within the metric region has 
some value. The generally low R2 values (not shown) compared with previous studies (Zack et 
al. 2010a, b) indicate that these results may be impacted by the lack of ensemble variance 
discussed in detail in Section 3. To examine the predicted impact of more than one observation 
on the initial state to the simulated metric value at a later time, 1-, 2-, 3-, and 4-variable 
regressions were computed for both the 1- and 3-hour look-ahead period shown in Table 5. 
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Table 5. Average R2 value for 1-, 2-, 3-, and 4-variable sensitivity regression for a 3-hour and 1-
hour forecast of 80-m wind speed in the Tehachapi target area for all time periods. 

IC Variables All Periods 
3-hour  

All periods 
1-hour 

One Variable 

(1) 80-m wind speed 0.100 0.197 

(2) 250-m wind speed 0.095 0.199 

(3) 10-m to 80-m wind shear 0.093 0.166 

(4) 2-m to 80-m temperature difference 0.090 0.145 

Two Variables 

(1) and (2) 0.172 0.293 

(1) and (3) 0.168 0.286 

(1) and (4) 0.172 0.284 

(2) and (3) 0.170 0.291 

(2) and (4) 0.165 0.283 

(3) and (4) 0.162 0.256 

Three Variables 

(1), (2) and (3) 0.230 0.361 

(1), (2) and (4) 0.230 0.360 

(1), (3) and (4) 0.225 0.350 

(2), (3) and (4) 0.225 0.352 

Four Variables 

(1), (2), (3) and (4) 0.276 0.415 

When comparing R2 values for 1-, 2-, 3-, and 4-variable regressions, there is a substantial 
decrease from the 1- to 3-hour look-ahead period. This result suggests that the value of an 
observation decreases significantly with increasing look-ahead time. Three other conclusions can 
be drawn from the statistics shown in Table 5: 

1. Each variable explains about the same amount of variance as any other variable. 
2. For a given number of variables in combination, the particular combination of variables 

affects the R2 value only slightly or not at all. 
3. Adding a variable to any given combination increases the R2 value significantly. The 

increase is nearly the same, no matter which variable is added to the combination. This 
result is even true when adding 250-m wind speed to a combination or single variable 
that includes 80-m wind speed. 
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For the Tehachapi winter study, any of the four variables selected is about as useful the others in 
providing independent information to improve forecasts. These MOOA results are significantly 
different than those from the Mid-Columbia or Tehachapi summer ensembles (Zack et al. 2010a, 
b) and are quite possibly an artifact of the unrealistically low ensemble spread. 

The highest explained variance in the modeled sensitivity relationship was produced by using a 
4-variable regression for both the 1- and 3-hour look-ahead period. The coefficient values for a 
4-variable regression are shown in Table 6 for the 1- and 3- hour look-ahead periods. The 80-m 
and 250-m wind speeds have the largest coefficient for the 1-hour look-ahead period. This result 
suggests that persistence is the best indicator for the 1-hour look-ahead period, and 80-m wind 
speed at the target location is most sensitive to the initial value of these variables. This 
interpretation changes when looking at the 3- hour look-ahead period where 10-m to 80-m AGL 
wind shear has the largest coefficient value. 

Table 6. Average coefficient values of the 4-variable sensitivity regression for a 3- and 1-hour 
forecast of 80-m wind speed in the Tehachapi target area for all time period 

IC Variables All Periods 
3-hour 

All Periods 
1-hour 

Four Variables 
(1) 80-m wind speed 0.025 0.160 
(2) 250-m wind speed 0.014 0.184 
(3) 10-m to 80-m wind shear 0.056 0.037 
(4) 2-m to 80-m temperature difference -0.014 -0.009 

Correlations were also computed for the 3-hour look-ahead period over a high variance 
subsample. The general location of the highest R2 values is all in close proximity to the target 
region for both the full period results and the high variance case results (Fig. 21). This finding is 
similar to previous results for the Mid-Columbia Basin region (Zack et al. 2010b) with the 
exception that the highest R2 locations for each variable are not in one particular direction away 
from the metric location, but scattered in all directions close to the target location. The absence 
of preferred locations may be due to the highly variable nature of wind direction from case to 
case for the winter regime as well as the low variance in the ensemble described in Section 3. 
The R2 values for the resulting regression equations at the metric site for the 3-hour look-ahead 
period during both the full period and the high-variance subsample are listed in Table 7. Using 
all four variables, there was actually a slight decrease in R2 from the full period to the high 
variance sample as opposed to the increase that was hypothesized. This trend means that the high 
variance period actually had less predictive value than the complete period. The implication is 
that low ensemble spread played only a partial role in generally low R2 values and the 
assessment of uncertainty in the flow was not improved by increasing the average variance of the 
sample. 
Even for the high-variance cases, the ensemble spread was low compared to the Tehachapi 
summer ensemble. This point is illustrated by the variance of 5-25 m2/s2 (approximate standard 
deviation of 2-5 m/s) within the metric box for the summer cases (Fig. 2 left panel) compared 
with a variance on the order of 0.25 m2/s2 (standard deviation around 0.5 m/s) for high-variance 
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winter cases (Fig. 3). With the exception of the event on 0000 UTC on January 20 (even for 
high-variance winter cases shown in Fig.4 top panel), the ensemble spread indicates little if any 
uncertainty in the phase, amplitude, or occurrence versus non-occurrence of ramping events. So, 
both the amount and type of ensemble spread may play a role in the low R2 values. 

The coefficient values of the 4-variable regression are shown in Table 8. For all cases, the 10-m 
to 80-m AGL wind shear has the largest value while the 2-m to 80-m temperature difference has 
the largest value for high-variance cases. However, there is much less variation in coefficient 
magnitude for the high-variance cases than for all cases. 

Overall, the Tehachapi winter 4-variable regressions show significantly lower explained variance 
than the 3-variable regressions for the Mid-Columbia Basin and the Tehachapi regions during the 
summer (Zack et al. 2010a, b). As a result, there is some uncertainty in the findings from this 
study, especially due to the relative small variation of the R2 value for a given number of 
variables in a combination, no matter which variables were included. 

In addition to examining averages, explained variance, and coefficient values during the full 46 
day period, a subsample of high-variance events was also examined. The variability of R2 for a 
4-variable regression is shown in Figure 22 for a sample of the high variance cases. Events at the 
beginning of the period around 10 January show the highest R2 values ranging from 0.6 to 0.75 
but quickly decrease for the rest of the period except for isolated instances on January 24 and 
February 7. 

A similar trend shows up in the coefficient values for the 4-variable regression with higher 
magnitude coefficient values around 13 January (Fig. 23). The highest single event coefficient 
value occurs on 7 February for the 80-m wind speed variable. Overall, there is a high degree of 
variability from case to case for the explained variance and the 4-variable coefficient values. 
Specific events for 10 and 13 January as well as 7 February may have some predictive value 
even though most of the high variance subsample exhibits low explained variance (~0.2). 
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Figure 20. Points of maximum average 46-day R2 sensitivity for a 3-hour (top) and 1-
hour (bottom) forecast of the average 80-m wind speed over the Tehachapi target area 
(white box) for four IC variables: (1) 80-m wind speed, (2) 250-m wind speed, (3) 10-m 
to 80-m wind shear, and (4) 2-m to 80-m temperature difference. The color shading 
depicts the elevation (m) of the model terrain above sea level.  
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Figure 21. Points of maximum average 46-day (top) and high variance subset (bottom) 
R2 sensitivity for a 3-hour forecast of the average 80-m wind speed over the Tehachapi 
target area (white box) for four IC variables: (1) 80-m wind speed, (2) 250-m wind 
speed, (3) 10-m to 80-m wind shear, and (4) 2-m to 80-m temperature difference. The 
color shading depicts the elevation (m) of the model terrain above sea level. 
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Table 7. Average R2 value for 1-, 2-, 3-, and 4-variable sensitivity regression for a 3-hour 
forecast of 80-m wind speed in the Tehachapi target area for all time periods and high-variance 
periods. 

IC Variables All Periods 
3-hour  

High-Variance 
Periods 
3-hour 

One Variable 
(1) 80-m wind speed 0.100 0.067 
(2) 250-m wind speed 0.095 0.069 
(3) 10-m to 80-m wind shear 0.093 0.072 
(4) 2-m to 80-m temperature difference 0.090 0.073 

Two Variables 
(1) and (2) 0.172 0.125 
(1) and (3) 0.168 0.129 
(1) and (4) 0.172 0.131 
(2) and (3) 0.170 0.127 
(2) and (4) 0.165 0.131 
(3) and (4) 0.162 0.122 

Three Variables 
(1), (2) and (3) 0.230 0.179 
(1), (2) and (4) 0.230 0.181 
(1), (3) and (4) 0.225 0.18 
(2), (3) and (4) 0.225 0.171 

Four Variables 
(1), (2), (3) and (4) 0.276 0.220 
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Table 8. Average coefficient values of the 4-variable sensitivity regression for a 3-hour forecast 
of 80-m wind speed in the Tehachapi target area for all time periods and the high-variance 
periods.  

IC Variables All Periods High-Variance 
Periods 

Four Variables 
(1) 80-m wind speed 0.025 0.035 
(2) 250-m wind speed 0.014 0.026 
(3) 10-m to 80-m wind shear 0.056 0.027 
(4) 2-m to 80-m temperature difference -0.014 -0.048 

The MOOA analysis suggests that it is necessary to utilize all four of the identified 
variables/locations in order to achieve consistent values for the ramp event cases during the 
Tehachapi winter study. However, there is likely more information to be extracted from the 
sensitivity dataset, given that several factors were not considered in this preliminary analysis. 
The results also show a significant decrease in R2 value from previous studies (Zack et al. 2010a, 
b) that may be due to the lack of ensemble spread (as discussed in Section 3). The lack of 
improvement in the R2 results for the high variance subset suggests other factors including that 
the ensemble design could not fully assess uncertainty in the winter regime. 

In this study, the locations of the second, third, and fourth variables were chosen based on the 
maximum single variable regression R2 value. However, the locations of maximum R2 for each 
variable are not necessarily the locations that will achieve the highest R2 for a 2- or 3- or 4-
variable regression. It is certainly possible that the maximum R2 locations may be more strongly 
correlated with each other than other sites with somewhat lower R2. In this case, it is conceivable 
that a combination of two, three or four sites, several with R2 values less than the maximum for 
single variable regression, will produce the highest R2 value for multivariable regression. It is 
also possible that the best multivariable combination may include multiple occurrences of the 
same variable observed at two more different locations. 
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Figure 22. A representative sample of R2 values for a multiple regression of four normalized IC 
variables from their respective points of maximum average R2 values. The R2 values were 
calculated from the high variance cases listed in Table 2 for a 3-hour forecast of the average 80-
m wind speed in the Tehachapi metric box. 
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Figure 23. A representative sample of the absolute value of the regression coefficient for 
combinations of four normalized IC variables from their respective points of maximum average 
ramp case R2 values. The R2 values were calculated from the high variance cases listed in Table 
2 for 3-hour forecasts of 80-m wind speed in the Tehachapi metric box. 

One method to test a larger set of variables and locations would be to start with the location of 
highest R2 for a single variable. A 2-variable regression could be performed with this point and 
every grid point for the second variable. A map of the 2-variable regression R2 values could then 
be created to select a location that produces the maximum 2-variable R2. A 3-variable regression 
could be performed for these two variables and locations as well as every grid point location of 
the third variable followed by the extraction of a second R2 map. Finally, the location that 
produced the maximum 3-variable regression R2 could be selected. Although this exercise is 
computationally intensive, it could be used to determine the optimal location for additional 
observations given a known first location and variable. 
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6. Summary 
In past research, the ensemble sensitivity analysis (ESA) has been applied to large-scale weather 
prediction. Zack et al. (2010a, b) extended the ESA method to the mesoscale by adding a 
multiple observation optimization algorithm (MOOA) to analyze forecast sensitivity in both the 
Tehachapi Pass and the Mid-Columbia Basin regions in the summer season. In this current study, 
the ESA-MOOA approach was used to study forecast sensitivities of 80-m wind speed for a 
winter regime for the Tehachapi Pass region. 

The ESA-MOOA is based on statistical analysis of data from an ensemble of NWP model 
simulations for an analysis period that is representative of the weather regimes in the area of 
interest. The ensemble members differ from each other due to perturbations introduced in the 
initial and boundary conditions of the simulations. The resulting analyses are used to estimate 
forecast sensitivity to prior values of atmospheric state variables for selected variables and look-
ahead periods. One or more composites (e.g. averages, frequency) of forecast sensitivity 
parameters can then be generated to provide information about the climatological sensitivity 
patterns. These composite patterns can in turn provide guidance on where to deploy 
meteorological sensors to achieve the greatest impact on forecast performance for the desired 
variable and look-ahead period. 

For this study the ESA-MOOA method was applied to the Tehachapi Pass during winter using 
the WRF 2.2 atmospheric model and DART data assimilation software. An ensemble of 48 
members was generated over a period extending from 1 January to 18 February 2010. The first 
two days were considered to be a spin-up period for the ensemble and were excluded from the 
forecast sensitivity calculations. Output was saved every hour and the forecast sensitivity for 1- 
to 3-hour look-ahead periods was computed from the hourly output data. Thirteen prior state 
variables were considered in the analysis. 
The initial analysis of results for the Tehachapi winter study showed noisy and widely scattered 
sensitivity values along with low R2 and significant sensitivity frequency values. Further 
examination revealed that the ensemble suffered from extremely low spread when compared to 
forecasts from previous ESA-MOOA studies done for the Tehachapi and Mid Columbia summer 
experiments (Zack et al. 2010a, b). The Tehachapi winter results that exhibited a low ensemble 
spread were likely caused by an increase in the spatial correlation of the perturbations of the 
boundary conditions, the lack of a nested and large domain, and/or changes in the characteristic 
uncertainty of the seasonal flow within the region. 
The 1- and 3-hour R2 results showed persistence contributed to most of the explained variance in 
the forecasted metric value. Using the location of maximum 46-day average R2 values of the 
sensitivity, a 4-variable sensitivity regression was computed using 80-m wind speed, 250-m wind 
speed, 10 to 80-m wind shear and, 2-m to 80-m temperature difference. For these variables, the 
highest R2 values were associated with the 1-hour look-ahead time period and decreased with 
increasing look-ahead time. 

Several insights can be made in comparing the Tehachapi summer and winter results. The 
Tehachapi summer runs (Zack et al. 2010a) had the same domain and nesting configuration as 
the winter runs. However, the spatial extent of perturbations in the summer runs was smaller. 
The regime flow was uncertain enough at the scale of these perturbations leading to significant 
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metric spread for the summer runs and meaningful sensitivity results. Several ideas are proposed 
for future ensemble experiments. 

• The domain must be large enough that the extent of the boundaries is equal to the 
scale of the flow that contributes to forecast divergence when perturbed. It might be 
helpful then to run a nested grid for all domains so that the boundaries are located far 
from the forecast metric location. The adverse effects of covariance inflation would 
be mitigated by boundaries that are located away from an inner nest where 
observations are assimilated. When perturbed boundaries are within ~300 km (based 
on the current radius of influence) of observations, covariance inflation could cause 
the ensemble to become unstable.  

• It is important to have a balance between perturbation size and magnitude so that the 
perturbations accurately assess the uncertainty in the initial and boundary conditions. 

• It can be seen that the perturbations added little if any phase differences to the 
ramping events in Tehachapi Pass. It might be valuable to explore a perturbation 
method that introduces phase uncertainty into the ensemble (Torn et al. 2006). 

The Mid-Columbia summer simulations (Zack et al. 2010b) used the same perturbation method 
but had a different grid nesting configuration when compared to the Tehachapi winter 
simulations. The Mid-Columbia summer simulations had a coarse outer and high-resolution 
inner nested grid and the Tehachapi winter simulations only had one high resolution grid. A 
comparison of the Tehachapi winter with the Mid Columbia summer experiment revealed the 
importance of the model nesting configuration, even with the use of identical perturbation 
methods. Since the perturbations for the Mid-Columbia ensemble were introduced into the outer 
grid, they were significantly farther from the area of interest than the perturbations introduced in 
the Tehachapi winter ensemble. This would imply that perturbation distance from the target 
location is also important in influencing the amount of forecast ensemble spread at the target 
location.  

The results indicate that the growth, decay, and influence of perturbations on the metric variable 
are sensitive to the following factors. 

• Amplitude and spatial extent of the perturbations must be large enough to induce 
spread in both the first set of initial conditions and the boundary conditions for every 
forecast interval. 

• Type of weather regime simulated must have enough sensitivity that solutions can 
diverge as they respond to the perturbations. 

• Model configuration parameters such as the grid nesting allow or prevent growth of 
the perturbation with time. 

Some combination of these factors is the most likely cause of the low ensemble spread in the 
Tehachapi winter regime as compared to the summer season experiments. 

Examination of high ensemble variance during a subsample period was performed to see if the 
results would change. The analysis did not reveal any regions of higher magnitude sensitivity 
values, higher explained variance (R2), or increased frequency of the significant sensitivity 
throughout the domain for all variables. This result indicates that even though the variance was 
larger for the metric variable during these events, the spatial extent of variance among the initial 
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condition variables was not high enough to create a discernible signal/relationship. 
The results of this study indicate that both the seasonal weather regimes and exact 
implementation of the techniques of the ESA-MOOA method have a dramatic influence on the 
usefulness of the results as guidance for the design of sensor networks intended to improve 
forecast performance. There are a number of possibilities for extending the work done in this and 
related studies. 

• Reexamine the Tehachapi region using various techniques to introduce perturbations into 
the simulations and determine if low ensemble spread and sensitivities were intrinsic to 
the winter weather regimes or were an artifact of the implementation of the ESA-MOAA 
technique in this study. 

• Validate forecast sensitivity and other computed fields as well as observation deployment 
strategies derived from them. Such validation is essential before using the methodology 
as a routine tool to formulate sensor network deployment strategies. These issues could 
be addressed by observation denial experiments using actual data gathered at target 
locations or observing system simulation experiments (OSSEs; Kalnay et al. 1985; 
Arnold and Dey 1986). Data denial and/or OSSEs would reveal whether the highly 
sensitive areas do indeed have a significant impact on the prediction of 80-m wind speed 
at target locations. 

• Perform an analysis that stratifies the simulation experiments by events or weather 
regimes to determine the value of observations for critical events. Regime-based analysis 
could help determine where observations might be needed in regions that are sensitive to 
highly variable flows instead of focusing on the most common patterns. This regime 
based sensitivity analysis could also offer insight into the predictability and scales of 
uncertainty in various weather regimes. Regimes should be studied in concert with the 
perturbation technique discussed in the first bullet point. 

• Conduct experiments over a longer time period to account for biases related to season and 
current weather regime as well as address issues of representativeness given the limited 
sample size. 

• Expand the MOOA technique to include more variables and more target locations. This 
effort would help determine if there are other variables that could provide useful 
observation targeting information and also determine how the target sensitivity patterns 
change over a region and not just a few points. 
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Appendix A: Specifications of the ESA Configuration 
 

Table A-1. Configuration of the WRF 2.2 model and grid used in this investigation 

Grid 

•Matrix Size (NX,NY,NZ): 200 X 200 X 40 

•Grid cell size: ~ 4 km 

Model Configuration 

•WRF single-moment (WSM) 3-class ice scheme 

•Long wave radiation scheme: Rapid radiative transfer model 

•Short wave radiation scheme: Dudhia scheme 

•Boundary layer scheme: YSU scheme 

•No convective parameterization 

•60 second time step on outer grid, 20-second time step on inner grid 

•Runge-Kutta 3rd order time integration 

•Horizontal Smagorinsky 1st order closure  

•6th-order numerical diffusion turned on 
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Table A-2. Configuration of the Data Assimilation Research Testbed (DART) module 

•Square root Ensemble Kalman Filter  

•Cycled every 6 hours 4 times a day with various observations 

•Ensemble size: 48 members 

•Perturbed IC from National Weather Service (NWS) Rapid Update Cycle (RUC) for first 
cycle 

•Perturbed boundary conditions for each assimilation period, boundary conditions also from 
RUC 

•Deterministic inflation based on spatially-varying state space (I.e. covariance inflation) 

•Initial inflation standard deviation 0.6 

•Initial inflation 1.0 

Table A-3. Data Assimilated Every 6 Hours into the Ensemble of Simulations 

Assimilated Observations Evaluated observations 

 'RADIOSONDE_TEMPERATURE',  
 'RADIOSONDE_U_WIND_COMPONENT', 

 'RADIOSONDE_V_WIND_COMPONENT', 
 'RADIOSONDE_SPECIFIC_HUMIDITY',  

 'ACARS_TEMPERATURE', 
 'ACARS_U_WIND_COMPONENT', 

 'ACARS_V_WIND_COMPONENT', 
 'ACARS_SPECIFIC_HUMIDITY', 

'MARINE_SFC_TEMPERATURE', 
'MARINE_SFC_SPECIFIC_HUMIDITY', 

 'RADIOSONDE_SURFACE_ALTIMETER', 
'MARINE_SFC_ALTIMETER', 

 'LAND_SFC_ALTIMETER', 
 

'METAR_TEMPERATURE_2_METER', 
 'METAR_U_10_METER_WIND', 

 'METAR_V_10_METER_WIND', 
 'MARINE_SFC_U_WIND_COMPONENT', 

 'MARINE_SFC_V_WIND_COMPONENT', 
 'LAND_SFC_U_WIND_COMPONENT', 

 'LAND_SFC_V_WIND_COMPONENT', 
 'DEW_POINT_2_METER',/ 

 'LAND_SFC_TEMPERATURE', 
 'LAND_SFC_SPECIFIC_HUMIDITY', 
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Appendix B: Vertical Levels of the Model 
 

Table C1. Approximate pressure and altitude for each model level interface for a grid point at 
sea level. 
 

Model 
Level 
Number 

Pressure 
Level pa 

Approx. 
Altitude 
(m) 

Model 
Level 
Number 

Pressure 
Level pa 

Approx. 
Altitude 
(m) 

1 101344 0 21 34600 8250 
2 100650 55 22 31900 8800 
3 99700 135 23 29400 9350 
4 98400 250 24 27000 9900 
5 96900 375 25 24800 10,500 
6 95000 550 26 22700 11,050 
7 92600 750 27 20700 11600 
8 89800 1000 28 18900 12,200 
9 83900 1550 29 17200 12,800 
10 78400 2100 30 15600 13400 
11 73100 2700 31 14200 14,050 
12 68200 3200 32 12800 14,700 
13 63500 3800 33 11500 15,350 
14 59100 4300 34 10400 16,000 
15 54900 4900 35 9300 16,700 
16 51000 5500 36 8300 17,450 
17 47300 6000 37 7400 18,200 
18 43800 6600 38 6500 18,950 
19 40600 7100 39 5700 19,800 
20 37500 7700 40 5000 20,600 
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Appendix C: Additional Variable Sensitivity Results 
1-Hour Ahead 

 
Figure C1. Average sensitivity of 80-m wind speed (m/s) within the white target box to 250-m 
AGL wind speed (m/s) throughout the entire grid domain for a 1-hour ahead forecast during all 
time periods in the 46-day analysis period for Tehachapi. 

 

 
Figure C2. Average sensitivity of 80-m wind speed (m/s) within the white target box to 3-km 
MSL wind speed (m/s) throughout the entire grid domain for a 1-hour ahead forecast during all 
time periods in the 46-day analysis period for Tehachapi. 
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Figure C3. Average sensitivity of 80-m wind speed (m/s) within the white target box to 80-m to 
500-m AGL wind shear throughout the entire grid domain for a 1-hour ahead forecast during all 
time periods in the 46-day analysis period for Tehachapi. 

 

 
Figure C4. Average sensitivity of 80-m wind speed (m/s) within the white target box to 80-m to 
2-m AGL temperature throughout the entire grid domain for a 1-hour ahead forecast during all 
time periods in the 46-day analysis period for Tehachapi. 
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Figure C5. Average sensitivity of 80-m wind speed (m/s) within the white target box to 2-m to 
80-m AGL temperature difference throughout the entire grid domain for a 1-hour ahead forecast 
during all time periods in the 46-day analysis period for Tehachapi.  

 

 
Figure C6. Average sensitivity of 80-m wind speed (m/s) within the white target box to 10-m to 
80-m AGL wind speed difference throughout the entire grid domain for a 1-hour ahead forecast 
during all time periods in the 46-day analysis period for Tehachapi. 
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3-Hour Ahead 

 
Figure C7. Average sensitivity of 80-m wind speed (m/s) within the white target box to 250-m 
AGL wind speed (m/s) throughout the entire grid domain for a 1-hour ahead forecast during all 
time periods in the 46-day analysis period for Tehachapi.  
 

 
Figure C8. Average sensitivity of 80-m wind speed (m/s) within the white target box to 3-km 
MSL wind speed (m/s) throughout the entire grid domain for a 3-hour ahead forecast during all 
time periods in the 46-day analysis period for Tehachapi.  
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Figure C9. Average sensitivity of 80-m wind speed (m/s) within the white target box to 80-m to 
500-m AGL wind shear throughout the entire grid domain for a 3-hour ahead forecast during all 
time periods in the 46-day analysis period for Tehachapi. 
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Appendix D: Additional Variable R2 Sensitivity Results 
1-Hour Ahead 

 
Figure D1. Average R2 sensitivity of 80-m wind speed (m/s) within the white target box to 250-m 
AGL wind speed (m/s) throughout the entire grid domain for a 1-hour ahead forecast during all 
time periods in the 46-day analysis period for Tehachapi. 

 
Figure D2. Average R2 sensitivity of 80-m wind speed (m/s) within the white target box to 3-km 
MSL wind speed (m/s) throughout the entire grid domain for a 1-hour ahead forecast during all 
time periods in the 46-day analysis period for Tehachapi. 
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Figure D3. Average R2 sensitivity of 80-m wind speed (m/s) within the white target box to 80-m 
to 500-m AGL wind shear throughout the entire grid domain for a 1-hour ahead forecast during 
all time periods in the 46-day analysis period for Tehachapi. 

 
Figure D4. Average R2 sensitivity of 80-m wind speed (m/s) within the white target box to 80-m 
to 2-m AGL temperature throughout the entire grid domain for a 1-hour ahead forecast during 
all time periods in the 46-day analysis period for Tehachapi.  
 



 49 

 
Figure D5. Average R2 sensitivity of 80-m wind speed (m/s) within the white target box to 2-m to 
80-m AGL temperature difference throughout the entire grid domain for a 1-hour ahead forecast 
during all time periods in the 46-day analysis period for Tehachapi. 

 
Figure D6. Average R2 sensitivity of 80-m wind speed (m/s) within the white target box to 10-m 
to 80-m AGL wind speed difference throughout the entire grid domain for a 1-hour ahead 
forecast during all time periods in the 46-day analysis period for Tehachapi. 
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3-Hour Ahead 

 
Figure D7. Average R2 sensitivity of 80-m wind speed (m/s) within the white target box to 250-m 
AGL wind speed (m/s) throughout the entire grid domain for a 3-hour ahead forecast during all 
time periods in the 46-day analysis period for Tehachapi. 

 
Figure D8. Average R2 sensitivity of 80-m wind speed (m/s) within the white target box to 3-km 
MSL wind speed (m/s) throughout the entire grid domain for a 3-hour ahead forecast during all 
time periods in the 46-day analysis period for Tehachapi. 
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Figure D9. Average R2 sensitivity of 80-m wind speed (m/s) within the white target box to 80-m 
to 500-m AGL wind shear throughout the entire grid domain for a 3-hour ahead forecast during 
all time periods in the 46-day analysis period for Tehachapi. 

 
Figure D10. Average R2 sensitivity of 80-m wind speed (m/s) within the white target box to 2-m 
AGL temperature throughout the entire grid domain for a 3-hour ahead forecast during all time 
periods in the 46-day analysis period for Tehachapi. 
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Figure D11. Average R2 sensitivity of 80-m wind speed (m/s) within the white target box to 10-m 
to 80-m AGL wind speed difference throughout the entire grid domain for a 3-hour ahead 
forecast during all time periods in the 46-day analysis period for Tehachapi. 
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3 hour ahead – High Variance Cases 

 
Figure D12. Average R2 sensitivity of 80-m wind speed (m/s) within the white target box to 250-
m AGL wind speed (m/s) throughout the entire grid domain for a 3-hour ahead forecast during 
all time periods in the high variance analysis period for Tehachapi.  

 
Figure D13. Average R2 sensitivity of 80-m wind speed (m/s) within the white target box to 2-m 
to 80-m AGL temperature difference throughout the entire grid domain for a 3-hour ahead 
forecast during all time periods in the high variance analysis period for Tehachapi. 
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Figure D14. Average R2 sensitivity of 80-m wind speed (m/s) within the white target box to 10-m 
to 80-m AGL wind speed difference throughout the entire grid domain for a 3-hour ahead 
forecast during all time periods in high variance analysis period for Tehachapi. 
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Appendix E: Additional Variable Significant Sensitivity Results 
3-Hour Ahead 

 
Figure E1. Frequency (fraction of time periods) of statistically significant non-zero sensitivity at 
the 95% confidence level for average 80-m wind speed in the forecast metric area (white box) to 
250-m wind speed 3 hours earlier for the 46-day sample. 

 
Figure E2. Frequency (fraction of time periods) of statistically significant non-zero sensitivity at 
the 95% confidence level of the average 80-m wind speed in the forecast metric area (white box) 
to 80-m to 500-m AGL wind shear 3 hours earlier for the 46-day sample. 
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Figure E3. Frequency (fraction of time periods) of statistically significant non-zero sensitivity at 
the 95% confidence level of the average 80-m wind speed in the forecast metric area (white box) 
to 2-m AGL temperature 3 hours earlier for the 46-day sample. 

 
Figure E4. Frequency (fraction of time periods) of statistically significant non-zero sensitivity at 
the 95% confidence level of the average 80-m wind speed in the forecast metric area (white box) 
to 2-m to 80-m AGL temperature difference 3 hours earlier for the 46-day sample. 
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Figure E5. Frequency (fraction of time periods) of statistically significant non-zero sensitivity at 
the 95% confidence level of the average 80-m wind speed in the forecast metric area (white box) 
to 10-m to 80-m AGL wind speed difference 3 hours earlier for the 46-day sample. 

 


